
Introduction to 
the ASpace API

Valerie Addonizio

Atlas Systems

API



This is Only the Beginning

Why is this a presentation and not a “workshop?”
• I’ve taught API workshops; they are brutal
• Not suited to foundational concepts
• Better off as a Part 2 to this Part 1
• This is a journey
• No, really, this might take you awhile

• I genuinely think what I’m about to show you is the 
best I can do for an introduction



5 years ago

15+ weeks of Python classes

Excellent colleagues

Years of frustration and failure

Unanticipated career shift

Lora!
Eric!
Austin!Python for Everybody (1-4)

Dr. Charles Severance
U Michigan via Coursera

Copying others

Learning by teaching

This is Only the Beginning

“And you may ask 
yourself, well

How did I get here?”

(seriously, I would be nowhere 
without these people)

“There’s an API for That!”
with Lora Woodford

2016-2018

Just cannot do 
this in three hours

(or eight hours)
(or 20 hours)



This is Only the Beginning

What I can give you
• This recording, which I suggest you watch again if you 

end up pursuing this
• My API Playbook, a guide for your next steps
• Includes API Client instructions (easy; start there)

• The scripts I demonstrate today
• Both the API Playbook and the scripts will be 

available here

https://support.atlas-sys.com/hc/en-us/articles/360052217114


Basics



Basics

• What’s an API?
• Same data, different view
• How do I access it?
• Why use it?
• Enables work at scale
• Enables applications to communicate directly



What’s an API?

• Stands for Application Program Interface
• There are many types
• ASpace has a RESTful web API

• You use APIs constantly
• They aren’t specifically meant for this

This = a human interacting with an application.
They are meant for applications to interact with 
applications.



What’s an API?

• It does nothing by itself
• Think of it like an open microphone
• It does nothing until the moment someone 

speaks
• Otherwise it sits silently, waiting for input



Basics

• What’s an API?
• Same data, different view
• How do I access it?
• Why use it?
• Enables work at scale
• Enables applications to communicate directly



Same data, different view

Just another way to interact with your data

Public
User 

Interface

Staff
User 

Interface

Application 
Program 
Interface

Your Data

:8080 :8081 :8089



Same data, different view

Staff interface:



Same data, different view

Public interface:



Same data, different view

XML:



Same data, different view

JSON record, through the API:



Basics

• What’s an API?
• Same data, different view
• How do I access it?
• Why use it?
• Enables work at scale
• Enables applications to communicate directly



How do I access it?

• We will be tackling this throughout the presentation
• But we’ll start with some basics about access:

• You access the API via a URL. Your IT department or hosting 
provider should have the address
• http://sandbox.archivesspace.org/api/

• Aspace comes with an API out of the box, but your IT 
department or hosting provider may have to enable it

• Local installs (if you run a blank AS on your computer) have 
it on by default via localhost:8089

• You log into the API via a local Aspace user account

http://sandbox.archivesspace.org/api/


Basics

• What’s an API?
• Same data, different view
• How do I access it?
• Why use it?
• Enables work at scale
• Enables applications to communicate directly



Basics

• What’s an API?
• Same data, different view
• How do I access it?
• Why use it?
• Enables work at scale
• Enables applications to communicate directly



Enables work at scale

Enabling work at scale

• For the first time ever I’m going to pause on these words
• Scale isn’t in question; the API lets you work on any scale
• But what work do I mean? What work do YOU mean?
• You registered for this workshop because you know the 

API is a thing
• But thinking about what you will ultimately accomplish is 

important as you start this journey



Enables work at scale

Enabling work at scale

• This presentation has always been based on my real life
• That life used to be primarily data cleanup

• Changing existing data by improving migrated and legacy data

• I also do data ingest
• Creating new records and new links with new information (or 

old information used in new ways)



Enabling work at scale

• I mention my work because that’s how I designed this 
workshop and how I approached everything I’ve done for 
the last four years. There’s assumptions in this.

• When I started teaching the API, it was how I tackled all 
my problems. One hammer for all tasks.

• Four years later, I now choose between two hammers: 
Python + API and SQL + database

I can solve any 
problem with 

one approach!

Enables work at scale



I used to work here 
exclusively

Now I work directly in the 
database >50% of the time

Public
User 

Interface

Staff
User 

Interface

Application 
Program 
Interface

Your Data



Python and the API

SQL and the database

Public
User 

Interface

Staff
User 

Interface

Application 
Program 
Interface

Your Data

Now I deploy:
• Python + API
• SQL + database
• Python + (SQL + database) + API



Enables work at scale

The API enables different types of “work at scale”

• Just browse the ArchivesSpace Awesome List
• Noah Huffman and Tracy Jackson (Duke University) use the API to create 

Trello cards for project management
• Corey Schmidt (University of Georgia) uses the API for batch exporting
• Kevin Schlottmann and David W. Hodges (Columbia University) use two APIs 

for their reporting and updating



Enables work at scale

What do you want to do at scale?
Do you want to change data?
Delete?
Create?
Connect?
Report?
Import?
Export?

You might now know yet. That’s totally fine.

Just remember to 
keep learning.



Basics

This is the true function of APIs, 
we’re just capitalizing

• What’s an API?
• Same data, different view
• How do I access it?
• Why use it?
• Enables work at scale
• Enables applications to communicate directly



Any application with an API

This is already happening with 
the LCNAF plugin in ASpace



Any application with an API

Any application with an API Any application with an API Any application with an API

The Dream!



Everything is a 
Conversation
The Request-Response Cycle



The Request-Response Cycle

Where are 
you?

At home like 
everybody 

else.

Click button, make stuff happen!

Did you get that 
thing I sent you?



The Request-Response Cycle

Where are 
you?

At home like 
everybody 

else.

Let me in!
My username and password is admin/admin.

200 OK



The Request-Response Cycle

Let me in!
My username and password is admin/admin.

Okay, I’ll let you in.

Create this new Resource record for me.

Okay, created.

Save this edited Agent record for me.

Okay, saved.

Let me delete this.

Nope.

That’s so 
deep.

Everything is a 
conversation

Your permissions persist.



The Request-Response Cycle

• You don’t have to think about any of this when 
you’re in the interface

• But now I want you to realize that you are 
participating in a conversation with ASpace

• Cultivate request/response mindfulness 



The Request-Response Cycle

• Now that you know you’re doing it, we will learn 
how to do it through the API

• To converse with the API, you need to know how
to send what to where



The Request-Response Cycle

The where part is what we’re 
going to tackle next

How to send What Where



Flipping the Ice 
Cream Switch
Reframe how you think about 
archival data



Atomization

One thing



Atomization

Multiple things



Atomization

“a finding aid”

One thing

The Morris Canal 

Company Photographs

Series I: Prints

Box 1:

Folder 1…………..….1907 

Folder 2………..…….1908 

Folder 3……………...1909 

Folder 4…………..….1910 

Folder 5…………..….1911 

Folder 6……………………1912

Folder 7…………….……1913

<archdesc level="collection">
<did>

<repository>
<corpname>test</corpname>

</repository>
<unittitle>Morris Canal Company papers</unittitle>
<unitid>MSS.0001</unitid>
<physdesc altrender="whole">
<extent altrender="materialtype spaceoccupied">2.5 Linear Feet</

extent>
</physdesc>
<unitdate normal="1880/1920" type="inclusive">1880-

1920</unitdate>
<langmaterial>
<language langcode="eng" scriptcode="Latn">English</language>

</langmaterial>
</did>

Paper <EAD>



Atomization

“a finding aid”

One thing



Atomization

“a finding aid”

1 resource record

17 archival objects3 agents

7 subjects

3 top containers

15 digital objects

Multiple things



Atomization

“a finding aid”

1 resource record

17 archival objects3 agents

7 subjects

3 top containers

15 digital objects

Multiple things



Atomization

Evolution of the Finding Aid
The Morris Canal 

Company Photographs

Series I: Prints

Box 1:

Folder 1…………..….1907 

Folder 2………..…….1908 

Folder 3……………...1909 

Folder 4…………..….1910 

Folder 5…………..….1911 

Folder 6……………………1912

Folder 7…………….……1913

Typed/printed
Bound

On a shelf

<archdesc level="collection">
<did>

<repository>
<corpname>test</corpname>

</repository>
<unittitle>Morris Canal Company papers</unittitle>
<unitid>MSS.0001</unitid>
<physdesc altrender="whole">
<extent altrender="materialtype spaceoccupied">2.5 Linear Feet</

extent>
</physdesc>
<unitdate normal="1880/1920" type="inclusive">1880-

1920</unitdate>
<langmaterial>
<language langcode="eng" scriptcode="Latn">English</language>

</langmaterial>
</did>

Encoded
Rendered as PDF or HTML

On the web

1 resource record

3 agents

7 subjects

17 archival objects

15 digital objects

3 top containers

Atomized and stored in tables in a SQL 
database

Links between records maintain their 
context

Display and export options are limitless



The Request-Response Cycle

Flipping this switch is a 
precursor to the where

How to send What Where



Endpoints
Unique URLs that represent 
an object or collection of 
objects



Endpoints

If you can train your mind to do this

Multiple things

1 resource record

17 archival objects3 agents

7 subjects

3 top containers

15 digital objects



Endpoints

Endpoints

Then your next step is this

/resources/1
/agents/1
/agents/2
/agents/3

/archival_objects/1
/archival_objects/2
/archival_objects/3
/archival_objects/4
/archival_objects/5
/archival_objects/6
/archival_objects/7

/subjects/1
/subjects/2
/subjects/3
/subjects/4
/subjects/5

/digital_objects/1
/digital_objects/2
/digital_objects/3
/digital_objects/4
/digital_objects/5

/top_container/1
/top_container/2
/top_container/3

Multiple things



Endpoints

Endpoints are the where

How to send What Where

/archival_objects/1
/archival_objects/2
/archival_objects/3
/archival_objects/4
/archival_objects/5
/archival_objects/6
/archival_objects/7



Endpoints

http://localhost:8089/repositories/:repo_id/resources/:id

http://localhost:8089  /repositories/2  /resources/101

Unique URLs that represent an object or collection of objects

Protocol | Host (domain name) | Port Repository inside ASpace Resource inside that repository

In my institution's instance of ASpace Inside the 2nd repository The 101st resource



Endpoints

http://localhost:8089/repositories/:repo_id/resources/:id

Unique URLs that represent an object or collection of objects

http://localhost:8089/repositories/:repo_id/top_containers/:id

http://localhost:8089/repositories/:repo_id/accessions/:id

http://localhost:8089/subjects

http://localhost:8089/agents/people

http://localhost:8089/locations



Endpoints

http://localhost:8089/repositories/:repo_id/resources?all_ids=true

Unique URLs that represent an object or collection of objects

http://localhost:8089/extent_calculator

http://localhost:8089/repositories/:repo_id/resources/:id/tree

http://localhost:8089/config/enumeration_values

http://localhost:8089 /:repo_id /jobs



Endpoints

Pro-tip on a convention:

In documentation you will see the API referred to as localhost:8089

This is a placeholder for “insert your API URL here”

Here’s a real one: http://sandbox.archivesspace.org/api

What happens when I navigate there?

https://archivesspace.github.io/archivesspace/api/
http://sandbox.archivesspace.org/api


Endpoints

• Endpoints change!
• Mainly they get added
• But remember that every update to AS 

might bring changes to endpoints

This endpoint only applies to 2.8.0+
But the documentation does not tell you that



Demos!
We’re be covering too much 
a lot

Just do this

Go here

Put that there

But that’s not 
the right way 
anyway

Do it this way instead

Isn’t the rest obvious?

AND 
THAT’S IT!



Demonstrations

Any API client (Postman)
Scripts (Python 3)

JSON Endpoints

We’re going to start 
with this

Which is going to get 
us some of this

Watch these as we go

(we’ll come back to the presentation to discuss JSON)

How to get What from Where



Demonstrations

How

Any API client (Postman)

Scripts (Python 3)

• GUI interface for working with APIs
• It’s more powerful than I realize
• I use it for simple calls
• Great for getting started

• The only practical way
• Huge barrier to entry for archivists
• Python3 near-universal in the AS community
• I’m using Jupyter Notebooks to show you Python 

scripts today



Demonstrations

How

Any API client (Postman)
Scripts (Python 3)

Basic commands:

• GET
• POST
• DELETE

Whichever you use
You need these



Demonstration

What we’ve covered so far

• The API shows you the same 
data, different view

• That different view is available 
via a different route (endpoint)

• Working with the API is a 
conversation 

• The first conversation is always 
authentication

This demo

• Introduce Postman, an API client

• Mirror two experiences:
• Log in/authenticate

• GET a record

• Edit and POST a record back to 
ASpace



JSON
This is not scary.

Javascript Object Notation

Jason! JAY-sawn!



Demonstrations

Any API client (Postman)
Scripts (Python 3)

JSON Endpoints

We’re going to start 
with this

Which is going to get 
us some of this

Watch these as we go

How to get What from Where



JSON

• Data interchange format
• How a lot of APIs talk to each other

• Human-readable
• Key-value pairs

• “Key”: “Value”

• Has arrays



JSON

<unittitle>Morris Canal Company papers</unittitle>

“Title”: “Morris Canal Company papers”

<element></element>

“key”: “value”

<XML>

{JSON}



JSON

<archdesc>
<bioghist><p>The Morris Canal Banking Company was founded in 1824…</p></bioghist>
<scopecontent><p>This collection consists of…</p></scopecontent>

</archdesc>

“Notes”: [
{

“type”: “bioghist”,
“content”: “The Morris Canal Banking Company was founded in 1824…”

},
{

“type”: “scopecontent”,
“content”: “This collection consists of…”

}
]

<XML>

{JSON}



The answer 

to all your 

problems!

And now…. 
The Big Leap



Big Leap

The answer 

to all your 

problems!

I can identify 19th

century 
photographs?



What I can’t do today

• Scripting fundamentals

• Python fundamentals

• Set up a Dev environment

What I can do today

• Focus on Aspace-specific:
• Authentication

• Linking

• Example-walkthrough

• Suggest your exact next steps
• Give you my Playbook

• Give you some scripts

Big Leap

https://support.atlas-sys.com/hc/en-us/articles/360052217114


Big Leap

The answer to 

some of your 

problems!

Not a 
trap!

You can 
do it! We 

promise!



Scripting
Your biggest hurdle.



Scripting

You may have watched this presentation already knowing that…

Scripting is the only practical way to use the API

This stopped me in my tracks for about three years.

Not what I signed up 
for.



Scripting

Why do you need scripts?

• Because you can only do one thing at a time either in the 
interface or in the API
• You can only hit one endpoint at a time

• We make computers do what we do, just faster
• A script can still only do one thing at a time…. But really fast.



How fast you say?

Scripting



Scripting

Why do you need scripts?

• So the API itself isn’t a magical thing that makes all these 
awesome API projects happen

• It’s the scripts that make things happen, and the API just makes 
using scripts possible

• So in the end, we all need an introduction to scripting and an 
introduction to the API



Demonstrations

Any API client (Postman)
Scripts (Python 3)

JSON Endpoints

Now we’re using 
Python

Which is STILL going to 
get us some of this

And we’re still 
watching these as we 

go

How to get What from Where



Scripting

Scripts do what you do, just much faster

• Since my work focuses a lot on data cleanup and data mapping, 
that’s what these demos lean toward

• If you’re looking to create system integrations, I have no direct  
experience with that, but can probably talk my way through it



Demonstration

What we’ve covered so far

• The API shows you the same 
data, different view

• That different view is available 
via a different route (endpoint)

• Working with the API is a 
conversation 

• The first conversation is always 
authentication

This demo

• Introduce Jupyter notebooks for 
demonstrating scripts

• Mirror our Postman experience:
• Log in/authenticate

• GET a record

• Edit and POST a record back to 
ASpace



Pro-Tips
A few important reminders 
and FYIs

Pro-Tip #1: There are Pusheen icons in PowerPoint!!



Pro-Tips for the ASpace API

Session time is the same
• If you get logged out after an hour in the staff 

interface, same for the API
• You can change this in the config
• Re-auth might be handled by certain libraries

You need a local ASpace account to access the API
• You cannot authenticate to the API using your 

institution’s authentication



Pro-Tips for the ASpace API

Remember that your permissions still matter
• If you can’t do it in the interface, using the 

endpoint for the same action will be no different
• The API documentation will not mention 

permissions
• [:GET] /update-feed



Pro-Tips for the ASpace API

Know your link directions
• Record linking is not bidirectional
• Test your linking assumptions before finalizing 

your project

Be careful of overwrites
• When posting content back to a pre-existing 

record, you must post everything
• Anything left out will be overwritten as blank



Pro-Tips for the ASpace API

Some fields don’t appear if empty
• Example: If you have a top container without a 

barcode, there won’t be an empty barcode 
field in the JSON

• There just won’t be a barcode field at all
• This is another reason to start your test in the 

interface



Pro-Tips for the ASpace API

Never test against Production
• Do whatever it takes to NOT work directly in 

Production until you are ready

Always make backups
• Ask IT or your hosting provider for a backup 

immediately before undertaking an API project
• Alert your co-workers



Pro-Tips for the ASpace API

Wait for the indexer
• If you make thousands of changes in a short time, AS 

will need to catch up
• Wait a few minutes/an hour or more if you don’t see 

immediate results when you were sure you should
• Use Edit mode in the Staff interface for these kinds 

of checks (not View mode and not the PUI)



Python through the API

Get all archival objects and then get 
each AO and check the title and if it 
doesn’t have a comma, continue the 
script but if it does have a comma trim 
the comma and replace the value and 
then post the entire record back in and 
check the status of the post and then 
move onto to the next AO.

SQL against the DB

UPDATE `archival_objects`

SET `title` = TRIM(',' FROM `title`)

WHERE `title` regexp ',$’;

The API isn’t your only solution

Pro-Tips for the ASpace API



You probably want the API

• If you’re creating new data or links

• If you’re changing data and the 
change relies on archival context/ 
the hierarchy 
• “Add an access restrict note to 

any child of any child that is 
marked as restricted”

• Flag any top container linked to 
an archival object at the series 
level

You can probably use SQL in the db

• If your change does not require the 
hierarchy

• If you want simple, custom reports

• For simple changes. What’s simple? 
If it only takes a few nouns and one 
verb to describe it: 
• “Unpublish all digital objects”
• "Remove all trailing commas"
• "Find all ampersands"

The API isn’t your only solution

Pro-Tips for the ASpace API



Now what?
This was great and all, but…



The API Playbook

After this presentation is over, you will receive my API Playbook

It is my 25-ish page recipe for getting started

It is based on my experience

Sometimes the playbook is a step-by-step guide

Sometimes it’s a boat-ton of YouTube links

It’s the order of events and the specificity of the playbook that makes it relevant to you

I sincerely think that following this recipe will start you on this journey

I would hand this to my 2016 self

There’s NO WAY 
I can do this

Go through the Stargate 
and deliver this to your 

younger self.



The API Playbook

After this presentation is over, you will receive my API Playbook

It is my 25-ish page recipe for getting started

It is based on my experience

Sometimes the playbook is a step-by-step guide

Sometimes it’s a boat-ton of YouTube links

It’s the order of events and the specificity of the playbook that makes it relevant to you

I sincerely think that following this recipe will start you on this journey

I would hand this to my 2016 self

Get access to 
an API for 

testing

Begin your 
scripting 
journey

Get an API 
client and 

practice your 
endpoints



The API Playbook

Begin your 
scripting 
journey

1. Use a copy of your Production data. Ask the following to 
your IT department or hosting provider:

➢ Do/can we have a sandbox?
i.e. a separate copy of your Production data that you can play in

• Is the API open?
• What’s the URL?

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing



The API Playbook

Begin your 
scripting 
journey

Not ready to engage your IT department or hosting provider 
yet?

2. Download and run AS locally on your machine
• I’m running AS locally on Windows this very moment
• You don’t need Linux, you don’t need a server
• It will be blank
• But you can test all you want
• The API URL will be http://localhost:8089
• Instructions in Playbook 

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing



The API Playbook

Begin your 
scripting 
journey

Not ready to engage your IT department or hosting provider 
yet?

3.    Use the ASpace Sandbox API
• The API address is:

http://sandbox.archivesspace.org/api/
• It will get over-written
• But you can test all you want
• API URL in Playbook 

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing

http://sandbox.archivesspace.org/api/


The API Playbook

Begin your 
scripting 
journey

Download Postman, a free API client
• I don’t think you need admin privileges on your computer, 

but I’m not sure
• Use the Playbook to authenticate and GET your first record
• Experiment. A lot.

• Get all the major record types
• Read the JSON
• Explore arrays
• Compare what you see in the interface to what you see 

in the JSON
• Show your colleagues what you’re learning

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing



The API Playbook

Begin your 
scripting 
journey

Practice using endpoints
• Start with the endpoints for major record types, the ones you 

use all the time
• Accessions
• Resources
• Subjects and Agents
• Top containers
• Locations

• Then move on to endpoints you don’t recognize
• It’s okay if you can’t figure some out
• Even people who use the API have no idea sometimes

• Remember that the API documentation reflects the most 
recent version of Aspace, which might not be the version 
you’re testing with

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing

https://archivesspace.github.io/archivesspace/api/


The API Playbook

Begin your 
scripting 
journey

Acknowledge that this is a journey. 
• You might not want to take on an entirely new career goal
• Or maybe you do
• Whichever it is, it will take time
• You will get frustrated and hit dead ends
• You might want structure where there is none

• i.e. there isn’t an 8-week “Python for Archivists using the Aspace API” course, 
you will have to cobble that together for yourself

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing



The API Playbook

Begin your 
scripting 
journey

Share it. Cultivate buy-in.
• This is real advice, buy-in is important
• Are there others in your organization that you can learn with?

• Take classes together
• Have meetups
• Inevitably you will teach each other

• Even if you’re solo, share it
• Demonstrate using the API to your manager
• Present about it at your next staff meeting

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing

Managers:
Consider funding and time for Python classes for staff, and know that this is going to take awhile

Or, advocate for new relationships inside your organization
i.e. having an IT/archivists working group where there was none before, advocating for staff to 
have admin privileges on their machines, cultivating trust for archivists with growing tech skills



The API Playbook

Begin your 
scripting 
journey

• Big Picture Classes and/or Tutorials
• Troubleshooting
• Share it. Cultivate buy-in.
• Focus your skills

• More videos!!!
• Archivists + GitHub = Ideas

• Build your non-Python toolbox
• SQL
• Regular Expressions
• OpenRefine
• Git

• Your first script
• Your first API Project

Get an API 
client and 

practice your 
endpoints

Get access to 
an API for 

testing



End of 
Prepared 
Content!
Questions?

Improvisation?

Thanks to
Lora Woodford and Eric Hanson! #triad

Dumbledore’s Army for support and camaraderie | Mark Cyzyk and Alicia Detelich for SQL revelations
Austin Schaffer, Dustin Stokes, and all my supportive colleagues at Atlas Systems 


